Simulating 4D Simplicial Gravity including Degenerate Triangulations
نویسندگان
چکیده
We extend simulations of simplicial gravity in four dimensions to include degenerate triangulations and demonstrate that using this ensemble the geometric finite-size effects are much reduced. We provide strong numerical evidence for the existence of an exponential bound on the entropy of the model and establish that the phase structure is identical to that of a corresponding model restricted to an ensemble of combinatorial triangulations.
منابع مشابه
Simulating Four-Dimensional Simplicial Gravity using Degenerate Triangulations
We extend a model of four-dimensional simplicial quantum gravity to include degenerate triangulations in addition to combinatorial triangulations traditionally used. Relaxing the constraint that every 4-simplex is uniquely defined by a set of five distinct vertexes, we allow triangulations containing multiply connected simplexes and distinct simplexes defined by the same set of vertexes. We dem...
متن کاملThree-Dimensional Simplicial Gravity and Degenerate Triangulations
I define a model of three-dimensional simplicial gravity using an extended ensemble of triangulations where, in addition to the usual combinatorial triangulations, I allow degenerate triangulations, i.e. triangulations with distinct simplexes defined by the same set of vertexes. I demonstrate, using numerical simulations, that allowing this type of degeneracy substantially reduces the geometric...
متن کاملSchwinger-Dyson equation in three-dimensional simplicial quantum gravity
We study the simplicial quantum gravity in three dimensions. Motivated by the Boulatov’s model which generates a sum over simplicial complexes weighted with the Turaev-Viro invariant, we introduce boundary operators in the simplicial gravity associated to compact orientable surfaces. An amplitude of the boundary operator is given by a sum over triangulations in the interior of the boundary surf...
متن کاملSchwinger-Dyson Equlltion in Three-Dimensional Simplicial Quantum Gravity
We study the simplicial quantum gravity in three dimensions. Motivated by Boulatov's model which generates a sum over simplicial complexes weighted with the Turaev·Viro invariant, we introduce boundary operators in the simplicial gravity associated to compact orientable surfaces. An amplitude of the boundary operator is given by a sum over triangulations in the interior of the boundary surface....
متن کاملLattice Gravity and Random Surfaces
I review recent progress in simplicial quantum gravity in three and four dimensions, in particular new results on the phase structure of modified models of dynamical triangulations, the application of a strong-coupling expansion, and the benefits provided by including degenerate triangulations. In addition, I describe some recent numerical and analytical results on anisotropic crystalline membr...
متن کامل